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Marangoni convection. Part 2.
A cavity subject to point heating
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Marangoni convection in a cavity subject to point (concentrated) heating has been
investigated. The analysis includes the complete effects of the interface deformation.
The results determined for large Biot and zero Marangoni (zero Prandtl) numbers
show that steady convection may exist only for a limited range of Reynolds numbers
Re (bounded from above and from below), and for capillary numbers Ca and cavity
lengths L smaller than certain critical values. The main factor limiting the existence
of steady convection involves the interface approaching the bottom of the cavity.
Unsteady analysis shows that when the conditions guaranteeing the existence of
steady convection are not met, an interface rupture process sets in leading, eventually,
to the formation of a dryout at the bottom of the cavity. The initial stages of the
rupture process are characterized by a rapidly accelerating growth of the interface
deformation. The critical values of Re, Ca and L, which guarantee the existence of
steady convection, are mutually dependent and change with the heating rate; they
reach a minimum for instantaneous heating. Too rapid heating produces an oscillatory
transient which always decays in the range of parameters studied.

1. Introduction
This paper reports results of an analysis of the various phenomena that can be

induced by the thermocapillary effect. The understanding of these phenomena and
the development of techniques for their control are important in many areas of
technology, specifically in zero-gravity containerless material processing and in laser
cutting. Because of the complexity of problems found in applications, we shall focus
our attention on a simple reference problem consisting of a liquid contained in a
cavity open from above, with the free upper surface subject to an externally imposed
non-uniform heating, and with gravity absent. A complete understanding of the
dynamics of this simple system forms a convenient starting point for the analysis of
real systems. A detailed description of the model problem together with a review of
the relevant literature is given in Part 1 (Hamed & Floryan 2000). The present work
uses the same model problem and the same notation.

Floryan & Chen (1994) analysed the model problem referred to above and demon-
strated that the response of the liquid strongly depends on the type of external
heating. An infinite liquid layer may exist only when the external temperature field
satisfies restrictive existence conditions. Violation of these conditions leads to a large
interfacial deformation leading (possibly) to rupture of the layer. When a finite layer
is subject to such a heating, a large deformation occurs leading to the rupture of the
layer if the cavity is made sufficiently long. Tan, Bankoff & Davis (1990) considered
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an infinite layer subject to periodic heating and used the long-wavelength approxima-
tion to predict the interface rupture. Burelbach, Bankoff & Davis (1990) confirmed
these predictions experimentally. Since the existence conditions are very restrictive
and unlikely to be satisfied in practical applications, it is of interest to study the
response of the liquid subject to non-uniform heating under conditions leading to a
potentially large deformation (i.e. when the existence conditions are violated).

The behaviour of the liquid when the cavity sidewalls are differentially heated and
the external temperature varies linearly along the interface is described in Part 1.
Steady convection exists for a limited range of Reynolds numbers Re (bounded from
below), and for capillary numbers Ca and cavity lengths L smaller than certain critical
values. The tangency condition, where the interface becomes tangential to the hot
wall, was identified as the limiting factor for the existence of a continuous interface
connecting two specified contact points. Violation of this condition suggests possible
formation of a dryout on the hot wall in real systems. Time-dependent simulations
showed that the tangency condition determines the limit points for the steady response
of the system. When the heating is applied too rapidly, a large initial transient is
produced resulting in a large deformation and, possibly, leading to the violation of the
tangency condition before the limit point is reached. This transient can be eliminated
by reducing the heating rate. For a certain range of Ca and Re the system admits
two solutions, a steady one and an oscillatory one. The oscillatory mode consists of
the steady mode with a simple harmonic sloshing motion superposed on it.

It is of interest to determine how the response of the system changes when another
type of heating is applied. This paper reports results of such an investigation with
the liquid subject to point heating. This particular form of heating has been selected
because it mimics the heating produced by a laser. The corresponding temperature
distribution in the gas phase has been assumed of Gaussian form (following Floryan
& Chen 1994), i.e.

Tg(x) = 8e−x
2

. (1)

This heating does not satisfy the existence conditions (Floryan & Chen 1994) and
thus the interface is expected to undergo large deformations resulting, possibly, in its
rupture. We shall demonstrate that steady convection may exist only for a limited
range of Re, Ca (both are defined in the same manner as in Part 1) and L, and
that the factor limiting its existence involves the interface approaching the bottom
of the cavity. We shall also demonstrate that when the conditions guaranteeing the
existence of steady convection are not met, an interface rupture process sets in, leading
eventually to the formation of a dryout at the the bottom. The nature of the factor
limiting the existence of the continuous interface in the present case is thus different
from the one identified for the cavity with differentially heated sidewalls. It is further
of interest to note that point heating does not induce any oscillatory convection for
the range of parameters analogous to that studied for the cavity with differentially
heated sidewalls.

2. Discussion of results
All numerical results presented in this section have been obtained using the algo-

rithm described in Part 1. The error bounds and the grid densities used in the present
study are similar to those used in the companion paper and have been determined
through analogous grid convergence studies. Spot checking and verification of the
results have also been carried as in the companion paper.
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Figure 1. Interface deformation at x = 0 (maximum deformation) as a function of capillary
number Ca. The flow and deformation patterns corresponding to points (a–d) are shown in
figure 2.

In order to simplify the following discussion, we shall consider only the case of
Marangoni number Ma = 0 (Prandtl number Pr = 0) and Biot number Bi = ∞, as in
Part 1. The first condition limits our results to highly conductive liquids, such as liquid
metals, where conductive heat transport dominates over convective heat transport.
The second condition implies a very high heat transfer coefficient in the gas phase,
which makes the temperature of the interface effectively equal to the temperature of
the gas phase.

2.1. Steady-state response

As a first step, we shall determine the steady response of the liquid subject to surface
heating corresponding to the temperature distribution in the gas phase given by (1).
The sidewalls are assumed to have temperatures TL = TR = Tg(± 1

2
). Rivas (1991)

simulated point heating by assuming a Gaussian distribution of heat flux. His results
are limited to non-deformable interfaces and long cavities.

Figure 1 illustrates the evolution of the interface deformation at x = 0 as a
function of the capillary number Ca for the cavity lengths L = 2, 4, 6, 8 and for the
Reynolds numbers Re = 1, 10, 100, 200, respectively. This particular location along
the interface has been selected because it corresponds to the maximum interface
deformation induced by the point heating. The deformation curves were obtained by
repeating calculations with Ca increasing in steps as small as ∆Ca = 0.0001 until
a critical value Cacr was identified above which no steady solutions were found.
The reader may recall that increasing Ca corresponds to the interface becoming
progressively ‘softer’. In all cases the flow pattern was symmetric with respect to the
centreline of the cavity (i.e. with respect to x = 0). It can be seen that as Ca increases,
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Figure 2. The evolution of the flow and deformation patterns as a function of capillary number Ca
for L = 6, (a, b) Re = 1, (c, d) Re = 200. (a–d) correspond to points a–d on figure 1, respectively.
Only the left side of the cavity is shown due to the symmetry of the flow. Contour lines are shown
every 10% of ψmax (solid lines). Dashed lines show 1% of ψmax . In (a–d) |ψ|max = 1.0614, 1.1269,
0.5703, 0.7171, respectively.

the maximum deformation increases at a rapidly accelerating rate. The form of the
curves suggests that the deformation either becomes unbounded for Ca > Cacr , or
the system reaches a limit point for Ca = Cacr , with Cacr being a function of both L
and Re. We shall demonstrate in the next section that the latter is true.

It is difficult to correlate the variations of Cacr with Re because they are affected by
the cavity length L. For example, for L = 4 this relation is non-monotonic and Cacr

increases with Re increasing from Re = 1 to 10, and then it decreases with further
increase of Re. For L = 6, Cacr keeps increasing for much higher values of Re and
begins to decrease only after Re > 100. For L = 8, this relation becomes monotonic
and Cacr increases with Re in the whole range of parameters studied. We shall come
back to this question during discussion of the effects of the cavity length.

The evolution of the interface and the flow patterns are shown in figure 2(a, b) for
L = 6, Re = 1 and in figure 2(c, d) for L = 6, Re = 200. The convection pattern
consists of two large dominant vortices, each being the mirror image of the other. It
can be seen that the locations of the centres of the vortices are marginally influenced
by variations of Ca. Comparison of the figures shows that as Re increases the centres
of the recirculating vortices move towards the sidewalls with the interface becoming
progressively steeper there. The cores of the vortices become approximately inviscid
and the vorticity inside becomes constant for higher values of Re. Such vortices
are well described by the model proposed by Batchelor (1956). The local minimum
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Figure 3. Interface deformation at x = 0 (maximum deformation) as a function of Reynolds
number Re for (a) the cavity length L = 2 (dashed lines; right axis) and L = 4 (solid lines; left
axis), and (b) the cavity length L = 6 (solid lines) and L = 8 (dashed lines).

pressure associated with the vortex core causes flattening of the interface above the
vortex at Re = 200 (see figure 2c, d) and a local depression at higher Re (not shown).

Figures 3(a) and 3(b) illustrate the evolution of the interface deformation as a
function of the Reynolds number Re for L = 2, 4 and 6, 8, respectively, and for
various values of the capillary number Ca. It can be seen that as the Reynolds
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Figure 4. The evolution of the flow and deformation patterns as a function of Reynolds number Re
for Ca = 0.1, L = 6. (a–c) correspond to points (a–c) in figure 3(b), respectively. Only the left side
of the cavity shown due to the symmetry of the flow. Contour lines are shown every 10% of ψmax

(solid lines). Dashed lines show 1% of ψmax . In (a–c) |ψ|max = 1.0879, 0.9243, 0.7324 respectively.

number increases the deformation initially decreases, reaches a minimum, and then
begins to increase until a limit point is reached (if such a limit point exists in the range
of Re of this study, i.e. for 0 6 Re 6 500). This non-monotonicity is associated with
a change in the pattern of surface pressure distribution from the viscosity-dominated
(creeping flow) one to an almost inviscid one dominated by the inertial effects. This
transition occurs at lower Re in longer cavities and thus the non-monotonicity of the
interface deformation is more pronounced in longer cavities for the same Re. We shall
discuss this issue again later in the text. For L = 2 (figure 3a) steady solutions exist
for all values of Re (with Re 6 500). For L = 4 (figure 4) steady solutions do not exist
if Re > Recr ,a . The value of Recr ,a is a function of Ca and it decreases with an increase
of Ca. When L = 6 and L = 8 (figure 3b), the range of Re for which steady solutions
exist becomes bounded from below as well as from above, i.e. Recr ,b < Re < Recr ,a .
This range becomes narrower as Ca increases. It will be shown in the next section
that this range defines the limit points for steady solutions. The reader may also note
that the change of L from 2 to 4 increases the deformation by a factor of 10, further
increase of the cavity length to L = 6 increases the deformation by an additional
factor of 3–4, and the change to L = 8 increases the deformation by another factor
of 3–4.

The evolution of the flow field and the interface deformation patterns as a function
of Re are illustrated in figure 4 for L = 6, Ca = 0.1. An initial reduction followed by an
increase of the deformation as Re increases are clearly visible. This non-monotonicity
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Figure 5. The evolution of the interface (left axis) and surface pressure distribution (right axis) as
a function of Reynolds number Re for Ca = 0.1 and L = 6.

is well illustrated in figure 5, which displays the interface shapes for Ca = 0.1 and for
various values of Re. Variations of the interface shape can be explained by looking
at the surface pressure distributions shown in figure 5. The cavity may be subdivided
into three types of zones on the basis of the surface pressure distribution. The first
type covers a small area in the immediate neighbourhood of the contact point and
is characterized by a very large pressure rising rapidly with an increase of Re (which
is due to the divergence of pressure at the contact point). The second one covers
the area above the vortex centre where a local pressure minimum develops at higher
values of Re due to the inviscid character acquired by the vortex core. The third zone
covers the middle of the cavity and extends almost over half of its length; the pressure
there decreases substantially for lower values of Re but changes insignificantly once
the Reynolds number rises above 50. Large pressure in the first zone does not have a
major effect on the interface deformation due to the application of the fixed contact
point condition. Pressures in the second and the third zones dominate the deformation
and their interplay is responsible for the non-monotonic variation of the magnitude of
the deformation as Re increases. When Re is small enough (see the curve for Re = 25
in figure 5), the pressure is dominated by viscous effects; it has a low minimum at
x = 0 and rises monotonically with |x|. An increase of Re results in the reduction of
the pressure force required to overcome viscous friction (see the associated increase
of pressure at x = 0) and a decrease of pressure above the vortex due to the rise
of inertial effects there. The net result is a smaller pressure change along the second
and third zones, and thus a smaller interface deformation (see curves for Re = 50, 75
and 100 in figure 5). Further increase of Re does not affect the pressure at x = 0 but
increases the inertial effects leading to the formation of a local pressure maximum
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Figure 6. Interface deformation at x = 0 (maximum deformation) as a function of cavity length L.
The flow and deformation patterns corresponding to points (a–f) are shown in figure 7.

on the border between the second and third zones. The resulting increase of the
overall pressure change along these zones leads to a higher interface deformation
(see the curve for Re = 190 in figure 5). This is contrary to the case of the cavity
with differentially heated sidewalls (Part 1) where the vortex did not produce a local
pressure maximum and thus an increase of Re lead only to a decrease of the interface
deformation.

Figure 6 illustrates the effects of the cavity length L (or aspect ratio A) for different
values of Re and Ca. It can be seen that as L increases, the deformation increases at a
rapidly accelerating rate until no steady solution can be found. We shall demonstrate
in the next section that for L = Lcr the system reaches a limit point beyond which
steady solutions no longer exist. The system will reach the limit point regardless of
the value of Ca as long as L is made sufficiently long, which is in agreement with
the results of Floryan & Chen (1994). Lower values of Ca result in higher Lcr . The
dependence of Lcr on Re is more complex. For Ca = 0.01 an increase of Re results in
a decrease of Lcr . For Ca = 0.04 this relation becomes non-monotonic; an increase
of Re from Re = 1 to 100 results in a decrease of Lcr , while a further increase to
Re = 200 results in an increase of Lcr . At Ca = 0.06 this relation is monotonic
again, but reversed compared to the situation for Ca = 0.01, i.e. an increase of Re
corresponds to an increase of Lcr . At Ca = 0.1 the relation becomes non-monotonic,
but this time an increase of Re leads initially to an increase of Lcr and then to its
eventual decrease when Re > 100, which is opposite to what has been observed for
Ca = 0.04.

Figures 7(a–c) and 7(d–f) illustrate the evolution of the flow and deformation
patterns as a function of L for Ca = 0.04 and Re = 1 and Re = 200, respectively.
The reader may note that at Re = 1 the locations of the vortices are determined
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Figure 7. The evolution of the flow and deformation patterns as a function of cavity length L
for Ca = 0.04 and (a–c) Re = 1, (d–f) Re = 200. (a–f) correspond to points (a–f) in figure 6
respectively. Only the left side of the cavity shown due to the symmetry of the flow. Contour lines
are shown every 10% of ψmax (solid lines). Dashed lines show 1% of ψmax . In (a–f) |ψ|max = 0.1725,
1.0222, 0.9402, 0.0955, 0.3947, 0.6944 respectively.

by the location of the point heating, and that the size of the vortex cores (as
measured, for example, by the extent of the isoline corresponding to |ψ/ψmax | = 0.8)
remains approximately constant for L > 6. When Re = 200, the vortices appear to
be attached to the sidewalls and move apart as the length of the cavity increases,
with the size of the vortex cores increasing (and thus becoming more diffused) at
the same time. The surface pressure distributions for Re = 1 and Re = 200 are
shown in figure 8. For Re = 1 there is a steep negative pressure peak at the point
of application of heating. When the length of the cavity increases above L > 6, the
pressure approaches a constant value (independent of x) away from the heating area.
The pressure distribution is markedly different when Re = 200. There are pressure
peaks around the contact points and their magnitudes decrease with L. The pressure
distribution above the vortex is characterized by the possible appearance of a local
pressure minimum when the vortex core acquires inviscid characteristics. Such a local
pressure minimum is barely visible for L = 2 where it is overshadowed by the large
pressure rise at the contact point. This minimum is clearly visible for L = 6. For higher
cavity lengths, the vortex cores become progressively larger (and more diffused) losing
the inviscid characteristics; the associated local pressure drop is still visible for L = 8,
but hardly recognizable for L = 10.64. It is interesting to note that while the character
of the surface pressure variations is completely different for Re = 1 and Re = 200,
the final surface deformations and the critical lengths are very similar in both cases.
Moreover, the magnitude of the pressure change (along the interface) for both cases
is almost the same when L = Lcr . It appears that when L is sufficiently large, the
main factors affecting the magnitude of the deformation are the total pressure change
(along the interface) and the length of the cavity. Floryan & Chen (1994) have shown
in a much simpler case that even when the pressure change (along the cavity length)
remains constant as L increases, the deformation increases proportionally to L2. Our
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Figure 8. The surface pressure distributions as a function of cavity length L for Ca = 0.04 and
Re = 1 (left axis) and Re = 200 (right axis).

present results are in qualitative agreement with these conclusions. For Re = 1, the
pressure change remains essentially constant when the cavity length increases above
L = 6 (figure 8) and thus the increase of deformation (figure 7a–c) is a result of
increasing L. For Re = 200 the total pressure change decreases as the length increases
(figure 8) above L = 6. The fact that the corresponding deformation increases shows
that the effect of increasing L is much stronger.

It is useful to summarize the above discussion and to point out importance of
the cavity length L (or the aspect ratio A) before proceeding to the next subsection.
When L is sufficiently small (L 6 2 for the range of parameters studied) large
interface deformations do not occur due to the strong effect of the fixed contact point
conditions. On the other hand, we can reach the limit point even if Ca is fairly small
by making the cavity length sufficiently large. Results presented in figure 6 show that
for Ca = 0.01 the critical length is Lcr ≈ 20–25. Results of other tests show that
for Ca = 0.04, 0.06, 0.08, 0.1 we have Lcr ≈ 10, 8, 6.5, 5.5, respectively. This clearly
shows that one does not require large cavity lengths L before encountering significant
interfacial distortions even for fairly small values of Ca. One could conclude that there
are two regimes of system response depending on the cavity length. For short cavities,
the interface is dominated by the fixed contact points which prevent the appearance
of large deformations. For long cavities, the contact points have a minimal effect
and the interface is subject to large deformations (including possible rupture). The
transition between the ‘short cavity’ and the ‘long cavity’ regimes is very rapid and
depends on Re and Ca. In the range of parameters studied this transition occurs for
L ∈ (2, 4).

2.2. Time-dependent response

We have described in the previous subsection the steady response of the liquid subject
to the heating given by (1). We concluded that such a response exists only for a certain
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Figure 9. Interface deformation at x = 0 (maximum deformation) as a function of time for Re = 1,
L = 6, various values of Ca and instantaneous heating (solid lines, lower axis), and for Re = 1,
L = 6, Ca = 0.0898 (just above Cacr = 0.0879) and various reductions of the rate of heating
(equation 2(a–c), dashed lines, upper axis). The flow and deformation patterns corresponding to
points (a–d) are shown in figure 10.

range of parameter values. In the present subsection we shall describe what happens
outside this range. In particular, we shall demonstrate that the critical parameter
values determine the limit points of the system. Since the evolution of the system past
the limit point could depend on the heating history, we shall consider surface heating
in the form

Tg(x) = g(x) fi(t), i = 1, 2, (2a)

where g(x) = 8e−x2

and

f1(t) =H(t), f2(t) = 1− exp (−t2/a). (2b, c)

Instantaneous heating is described by the Heaviside functionH(t) in (2b). A variable
rate of heating is described by (2c), where the rate of heating is reduced by increasing
the value of the constant a. We shall measure the reduction in the rate of heating
by introducing the heating delay time tD defined as the length of time required to
reach 90% of the final surface temperature. For example, for a = 0.4343, 10.8574,
43.43, 1086, 4343 the heating delay time tD is equal to 1, 5, 10, 50, 100 time units,
respectively.

We shall begin our discussion by considering the effects of the capillary number Ca
on the response of the liquid. The reader may recall that we were unable to find any
steady solution for Ca > Cacr (see figure 1). Since the unsteady response is a strong
function of Reynolds number Re, we shall carry out the discussion for each of the
selected values of Re separately.
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Figure 10. The evolution of the flow and deformation patterns as a function of time for Re = 1,
L = 6, Ca = 0.0898 (just above Cacr = 0.0879) and instantaneous heating (equations (2a, b)). (a–d)
correspond to points (a–d) in figure 9 respectively. Only the left side of the cavity shown due to the
symmetry of the flow. Contour lines are shown every 10% of ψmax (solid lines). Dashed lines show
1% of ψmax . In (a–d) |ψ|max = 0.07243, 0.15501, 0.19836, 0.20867 respectively.

Figure 9 displays the time history of the surface deformation at x = 0 (maximum
deformation) for Re = 1, L = 6 resulting from instantaneous heating of the liquid
(equation (2a, b)). When Ca 6 Cacr (Cacr = 0.0879), the steady state described in
§ 2.1 is reached for t > 20. When Ca > Cacr , a period of rapid initial growth of the
deformation (for t < 5) is followed by a period of slow growth, after which the growth
rapidly re-accelerates. This re-acceleration as well as the absence of any steady state
suggest the initiation of a process leading to the rupture of the interface. The length
of the slow growth period is a strong function of Ca. For example, for Ca = 0.0898
(which is just above Cacr ) this period lasts almost 70 time units, while for Ca = 0.0910
it lasts less than 5 units. The evolution of the interface as well as the flow patterns are
shown in figure 10 for Ca = 0.0898. The reader may note the formation of an internal
stagnation point during the initial rapid evolution of the interface immediately after
application of the external heating (see, for example, the streamline pattern at t = 1 in
figure 10). A similar internal stagnation point appears at t = 89.2 when the growth of
the deformation rapidly accelerates suggesting initiation of the rupture process. The
question naturally arises of whether the evolution of the system towards the rupture
for Ca > Cacr is the result of the rapid heating rather than being an intrinsic property
of the system. Figure 9 also displays the history of the interface deformation resulting
from a reduced rate of heating (equation (2a, c)) for Ca = 0.0898 (just above Cacr ).
It can be seen that the qualitative response of the system does not change even for
a very slow heating (with the delay time tD = 100). We conclude therefore that Cacr
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defines the limit point of the system beyond which no steady states (corresponding
to a single continuous interface) exist.

Figure 11 illustrates the response of the liquid in the same cavity (L = 6) and subject
to an instantaneous heating with the Reynolds number increased to Re = 20. When
Ca < Cacr (Cacr = 0.098), the steady state described in § 2.1 is reached for t > 50.
An initial ‘overshoot’ of the steady state followed by an oscillatory decaying transient
is observed. The magnitude of this ‘overshoot’ and the amplitude of the oscillatory
transient increase while the frequency and the decay rate decrease when Ca increases.
A peculiar form of the deformation is observed for Ca ≈ Cacr where the deformation
initially rapidly increases to a level much higher than the one corresponding to the
steady state, then it remains almost stationary for about 20 time units, and afterwards
it slowly decreases to the steady-state level. When Ca > Cacr , the deformation keeps
rapidly increasing without any of the slowing down observed for Re = 1. This rapid
growth as well as the absence of any steady state suggest that we observe the initiation
of a process leading to the rupture of the interface. Figure 11 illustrates the fact that
we can eliminate the initial ‘overshoot’ and the oscillatory transient, as well the
peculiar ‘hump’ in the evolution of the deformation for Ca ≈ Cacr , by slowing down
the heating. One can also see that no steady state can be reached for Ca > Cacr , even
with very slow heating.

Figure 12 illustrates the response of the liquid in the same cavity (L = 6) subject
to the same heating with the Reynolds number increased to Re = 100. Comparison
of figures 11 and 12 shows that such an increase of the Reynolds number results
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Figure 12. Interface deformation at x = 0 (maximum deformation) as a function of time for
Re = 100, L = 6 and instantaneous heating (equations (2a, b)).
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Figure 13. Interface deformation at x = 0 (maximum deformation) as a function of time for
Re = 100, L = 6 and a reduced heating rate with tD = 50. The flow and deformation patterns
corresponding to points (a–d) are shown in figure 14.
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Figure 14. The evolution of the flow and deformation patterns as a function of time for Re = 100,
L = 6, Ca = 0.1051 (just above Cacr = 0.105) and a reduced heating rate with tD = 50. (a–d)
correspond to points (a–d) in figure 13 respectively. Only the left side of the cavity shown due to
the symmetry of the flow. Contour lines are shown every 10% of ψmax (solid lines). Dashed lines
show 1% of ψmax . In (a–d) |ψ|max = 0.54311× 10−2, 0.11529, 0.14499, 0.15074 respectively.

in a large increase of the initial overshoot of the steady state and a much stronger
and longer lasting oscillatory transient. The frequency of the oscillations increases
while their amplitudes decrease with a reduction of Ca. All transients decay in less
than 80 time units. We were unable to reach the steady-state solution described in
§ 2.1 for Ca = 0.1 < Cacr (Cacr = 0.105). The available results suggest that the large
initial overshoot of the interface deformation associated with such a rapid heating
triggers an early (i.e. before the critical conditions determined on the basis of analysis
of steady solutions are reached) interface rupture process. Figure 13 illustrates the
fact that the reduction of the rate of heating eliminates the oscillatory transients
and, indeed, we can reach steady state even for Ca = Cacr . The reduction in the
heating rate has to be, however, more pronounced than the one required for Re = 20.
If Ca > Cacr , no steady state can be reached and the system evolves towards the
rupture regardless of the significant reduction of heating rate. Figure 14 illustrates
the evolution of the interface and the flow patterns for Ca = 0.1051 (just above Cacr )
obtained with the same heating rate as in figure 13. One can observe the appearance of
the internal stagnation point in the centre of the cavity at t = 259 which characterizes
the initiation of the rupture process. On the basis of these and other tests we conclude
that Cacr defines a limit point.

To conclude the discussion of the effect of Re, we would like to draw the reader’s
attention to the curve corresponding to Ca = 0.1 in figure 3(b). This curve suggests
that the range of Re for which steady solutions exist is limited from above as well
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Figure 15. Interface deformation at x = 0 (maximum deformation) as a function of time for
Ca = 0.1, L = 6, instantaneous heating for Re = 20, 25, 30, and a reduced heating rate with tD = 50
for Re = 180, 190, 200.
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Figure 16. Interface deformation at x = 0 (maximum deformation) as a function of time for
Re = 1, Ca = 0.1 and instantaneous heating (equation (2a, b)). The flow and deformation patterns
corresponding to points (a–d) are shown in figure 17.
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Figure 17. The evolution of the flow and deformation patterns as a function of time for Re = 1,
Ca = 0.1, L = 5.415 (just above Lcr = 5.41) and instantaneous heating. (a–d) correspond to points
(a–d) in figure 16 respectively. Only the left side of the cavity shown due to the symmetry of the
flow. Contour lines are shown every 10% of ψmax (solid lines). Dashed lines show 1% of ψmax . In
(a–d) |ψ|max = 0.06888, 0.12164, 0.23321, 0.24974 respectively.

as from below. Results shown in figure 15 demonstrate that indeed the system has
limit points at Recr ,b ≈ 25 and Recr ,a ≈ 190. The calculations for Re = 180, 190, 200
had to be carried out with the reduced heating rate (tD = 50) for the same reason as
explained in the previous paragraph.

The last issue that we wish to discuss is the question of the effects of the cavity
length L. We were unable to find steady solutions for L > Lcr (see figure 6). Figure
16 displays the time history of the surface deformation at x = 0 for Re = 1, Ca = 0.1
resulting from instantaneous heating (equation (2a, b)). When L < Lcr (Lcr = 5.41),
the steady state described in § 2.1 is reached for t > 20. When L > Lcr , a period of
rapid initial growth of the deformation (for t < 5) is followed by a period of slow
growth, after which the growth rapidly re-accelerates. The form of the growth as well
as the absence of any steady state suggest the initiation of a process leading to the
rupture of the interface. The length of the period of slow growth preceding rapid
re-acceleration is a strong function of L. For example, for L = 5.415 (which is just
above Lcr ) this period lasts 60 time units, while for L = 5.46 it lasts less than 7 units.
The evolution of the interface as well as the flow patterns are shown in figure 17
for L = 5.415 (just above Lcr ). The reader again may note the formation of very
similar internal stagnation points during the initial period of rapid growth (at t = 1)
and during the rapid growth associated with the rupture (at t = 77.8). Similar results
can be obtained for higher values of Re. On the basis of these and other tests we
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conclude that Lcr defines a limit point of the system beyond which no steady states
(corresponding to a single continuous interface) exist.

3. Conclusions
We have investigated Marangoni convection in a cavity subject to (concentrated)

point heating, including the complete interface deformation effects. Detailed results
were presented for the case of the Marangoni number Ma = 0 (dominant conductive
heat transport; Prandtl number Pr = 0) and the Biot number Bi = ∞ (very high heat
transfer coefficient at the interface).

The results show that steady convection exists for a limited range of the Reynolds
numbers Re bounded from below and from above, and for capillary numbers Ca
and cavity lengths L smaller than certain critical values. The critical values Recr ,
Cacr and Lcr are mutually dependent. When any of Re, Ca, or L approaches its
respective critical value, the magnitude of the interface deformation increases rapidly,
with the interface approaching (as a function of this particular parameter) the bottom
of the cavity. Such interface evolution implies initiation of a process leading to the
rupture of the interface (and formation of a dryout at the bottom of the cavity) when
any of the Re, Ca, or L traverses its critical value. The physical character of the
process that limits the existence of steady convection is different from the case of
the cavity with differentially heated sidewalls, where the limiting factor involves the
interface becoming tangential to the hot wall. It is worth noting that in the present
case the increased viscous friction is responsible for the increased deformation when
Re decreases, while rearrangement of the pressure field associated with the vortex
dynamics is responsible for the increase of the deformation when Re increases. Vortex
dynamics in the case of heated sidewalls rearranges the pressure field differently,
always leading to reduction of the deformation when Re increases.

The convection pattern is symmetric with respect to the middle of the cavity and
consists of two dominant vortices, each being the mirror image of the other. When
Re increases, the centres of the vortices move apart and towards the sidewalls, with
their cores attaining inviscid characteristics for sufficiently large values of Re. The
inviscid character of the vortex core manifests itself through the creation of a local
pressure minimum at the interface above the core and a local flattening (or depression)
of the interface. When cavity length increases, the location of the vortex centres is
determined by the location of the point heating if Re is very small. For high values
of Re the centres of the vortices remain attached to their respective walls and move
away from the centre of the cavity when the cavity length increases. At the same
time, the size of the vortex core increases (thus becoming more diffused). If this core
has had an inviscid character in a short cavity, it loses this character when the cavity
length becomes large enough.

Unsteady analysis shows that the response of the liquid depends on the rate of
heating. For Re, Ca, and L outside the ranges limited by the critical values Recr ,
Cacr and Lcr , the deformation increases continuously in time from the moment of
application of the heating until the interface approaches the bottom of the cavity so
closely that the calculations cannot be continued. For Re, Ca, and L very close to
their respective critical values, the time history of the deformation consists of a rapid
initial growth (just after the application of the heating) followed by a characteristic
slow down. The existence of this slow down suggests that the specified conditions are
very close to those under which a steady solution exists. The end of the growth process
consists of a rapid re-acceleration of the growth suggesting initiation of the rupture
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process. The form of the interface growth process shows that Recr , Cacr and Lcr define
the limit points for the system. The location of the limit points in the parameter space
is sensitive to the rate of heating for a certain range of parameters. The presence
of potentially very strong transient effects is responsible for this sensitivity. These
transients can be effectively controlled by reducing the rate of heating.
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